Abstract

Synthetic heart valves designed from slowly degrading polymer enable gradual replacement by new host tissue during a 12-month study in sheep.

No matter what shade of red your Valentine’s Day was last month—sultry or sullen, sad or sweet—your heart beat more than 100,000 times, pumping 7500 liters of blood. Designing a device to achieve such precision and maintain it over a lifetime (about 70 years) requires integration of biology and engineering at a staggering level. Understandably then, despite great progress, design of adaptable, living heart valves has not been achieved. Prosthetic valves, for example, are nonliving structures that lack the functionality to respond to dynamic blood flow across days and years or the ability to grow with younger patients. Bouten and colleagues tackled this challenge with a fully synthetic heart valve designed from slowly degrading polymer that utilizes structural features to promote colonization by host cells,
allowing the synthetic valve to be slowly replaced by functional tissue.

In this approach, valves were formed by electrospinning biodegradable polymer fibers onto a polymer support. This strategy allowed design of topography and pore sizes known to encourage host cell infiltration, extracellular matrix production, and tissue remodeling. During a 1-year study in sheep, the valves maintained good cardiac function, and, importantly, became increasingly tissue-like when implanted as replacement pulmonary valves. At 2, 6, and 12 months, valves exhibited increasing infiltration of host cells, endothelialization, and ultimately generated new tissue, including elastin. As these processes occurred, the composition of biological components in and on the valves—for example, elastin and collagen—began to resemble native tissue. During these same intervals, the polymer fibers comprising the valve degraded, and the mechanical properties of the initial synthetic valve evolved to a more tissue-like elastic profile.

Existing synthetic heart valves are hindered by static dimensions and the need for material properties that closely match the profiles of natural valves. Likewise, tissue-engineered heart valves have required cells seeded in valve constructs prior to implantation, tissues or matrices from human donors, or scaffolds created by decellularizing tissue. Thus, this new report is distinct in that the entirely synthetic valves do not require cells or biological matrices but lead to the formation of adaptable, living tissue as the polymer degrades. Effectively translating this idea to the clinic might just keep your heart from skipping a beat.

Highlighted Article

Copyright © 379, American Association for the Advancement of Science

View Abstract
Professor, Assoc. Professor, Assist. Professor
Chapel Hill, North Carolina (US) | Undisclosed

Candidates should have clear potential, and commitment for research excellence, multidisciplinary collaboration, extramural funding and more.

Employer: Dept. of Applied Physical Sciences - University of North Carolina at Chapel Hill, NC

Northeastern University Invites High-Level Overseas Talents and Outstanding Young Talents
Liaoning (CN) | Negotiable

About the University Located in the center of Shenyang, Liaoning Province, China, Northeastern University is one of the key university directly aff...

Employer: Northeastern University

Full or Associate Professor (tenured), Chair, Environmental Science
Glassboro, New Jersey | Competitive

The School of Earth & Environment at Rowan University seeks to fill a Full/Associate Professor (Tenured) position starting September 1st, 2018 in t...

Employer: Rowan University, School of Earth & Environment

MORE JOBS ▶

Related Jobs
Professor, Assoc. Professor, Assist. Professor
Chapel Hill, North Carolina (US) | Undisclosed

Candidates should have clear potential, and commitment for research excellence, multidisciplinary collaboration, extramural funding and more.

Employer: Dept. of Applied Physical Sciences - University of North Carolina at Chapel Hill, NC

Northeastern University Invites High-Level Overseas Talents and Outstanding Young Talents
Liaoning (CN) | Negotiable

About the University Located in the center of Shenyang, Liaoning Province, China, Northeastern University is one of the key university directly aff...

Employer: Northeastern University

Full or Associate Professor (tenured), Chair, Environmental Science
Glassboro, New Jersey | Competitive

The School of Earth & Environment at Rowan University seeks to fill a Full/Associate Professor (Tenured) position starting September 1st, 2018 in t...

Employer: Rowan University, School of Earth & Environment

MORE JOBS ▶

Related Jobs
Professor, Assoc. Professor, Assist. Professor
Chapel Hill, North Carolina (US) | Undisclosed

Candidates should have clear potential, and commitment for research excellence, multidisciplinary collaboration, extramural funding and more.

Employer: Dept. of Applied Physical Sciences - University of North Carolina at Chapel Hill, NC

Northeastern University Invites High-Level Overseas Talents and Outstanding Young Talents
Liaoning (CN) | Negotiable

About the University Located in the center of Shenyang, Liaoning Province, China, Northeastern University is one of the key university directly aff...

Employer: Northeastern University

Full or Associate Professor (tenured), Chair, Environmental Science
Glassboro, New Jersey | Competitive

The School of Earth & Environment at Rowan University seeks to fill a Full/Associate Professor (Tenured) position starting September 1st, 2018 in t...

Employer: Rowan University, School of Earth & Environment

Science
FEATURE
A cold case

HEALTH POLICY
Reproductive health in culture wars crossfire

ANIMAL CONSERVATION
Tracking today

SCI COMMUN
News at a glance

ORGANIC SYNTHESIS
Addressing supply issues for natural products in the clinic

WORKING LIFE
I am a United Academic Worker

Subscribe Today
Receive a year subscription to Science plus access to exclusive AAAS member resources, opportunities, and benefits.

First Name

Last Name

Email Address

Subscribe Today
Receive a year subscription to *Science* plus access to exclusive AAAS member resources, opportunities, and benefits.

Get Our Newsletters

Enter your email address below to receive email announcements from *Science*. We will also send you a newsletter digest with the latest published articles. *See full list*

- [✓] Science Translational Medicine TOC
- [✓] *Science* Table of Contents
- [✓] *Science* Daily News
- [✓] *Science* News This Week
- [✓] *Science* Editor’s Choice
- [✓] First Release Notification

Email address

By providing your email address, you agree to send your email address to the publication. Information provided here is subject to *Science*’s Privacy Policy.

Sign up today

Get Our Newsletters

Enter your email address below to receive email announcements from *Science*. We will also send you a newsletter digest with the latest published articles. *See full list*

- [✓] Science Translational Medicine TOC
- [✓] *Science* Table of Contents
- [✓] *Science* Daily News
- [✓] *Science* News This Week
- [✓] *Science* Editor’s Choice
- [✓] First Release Notification

Email address

By providing your email address, you agree to send your email address to the publication. Information provided here is subject to *Science*’s Privacy Policy.

Sign up today